Injectable Nanoelectrodes Enable Wireless Deep Brain Stimulation of Native Tissue in Freely Moving Mice

2020 
Devices that electrically modulate the central nervous system have enabled important breakthroughs in the management of neurological and psychiatric disorders. Such devices typically have centimeter-scale dimensions, requiring surgical implantation and wired-in powering. Using smaller, remotely powered materials could lead to less invasive neuromodulation. Herein, we present injectable magnetoelectric nanoelectrodes that wirelessly transmit electrical signals to the brain in response to an external magnetic field. Importantly, this mechanism of modulation requires no genetic modification of the brain, and allows animals to freely move during stimulation. Using these nanoelectrodes, we demonstrate neuronal modulation in vitro and in deep brain targets in vivo. We also show that local thalamic modulation promotes modulation in other regions connected via basal ganglia circuitry, leading to behavioral changes in mice. Magnetoelectric materials present a versatile platform technology for less invasive, deep brain neuromodulation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    3
    Citations
    NaN
    KQI
    []