Experimental Observation of Anisotropic Adler-Bell-Jackiw Anomaly in Type-II Weyl Semimetal WTe1.98 Crystals at the Quasiclassical Regime

2017 
The asymmetric electron dispersion in type-II Weyl semimetal theoretically hosts anisotropic transport properties. Here we observe the significant anisotropic Adler-Bell-Jackiw (ABJ) anomaly in the Fermi-level delicately adjusted WTe$_{1.98}$ crystals. Quantitatively, $C_w$ , a coefficient representing intensity of ABJ anomaly, along a- and b-axis of WTe$_{1.98}$ are 0.030 and 0.051 T$^{-2}$ at 2 K, respectively. We found that temperature-sensitive ABJ anomaly is attributed to topological phase transition from type-II Weyl semimetal to trivial semimetal, which is verified by first-principles calculation using experimentally determined lattice parameters at different temperatures. Theoretical electrical transport study reveals that observation of ansotropic ABJ both along a- and b-axis in WTe$_{1.98}$ is attributed to electrical transport in the quasi-classical regime. Our work may suggest that electron-doped WTe$_2$ is an ideal playground to explore the novel properties in type-II Weyl semimetals.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    105
    Citations
    NaN
    KQI
    []