Novel donor-acceptor-donor structured small molecular hole transporting materials for planar perovskite solar cells

2019 
Abstract Novel donor-acceptor-donor structured small molecular hole transporting materials are developed through a facile route by crosslinking dithienopyrrolobenzothiadiazole and phenothiazine or triarylamine-based donor units. The strong push/pull electron capability of dithienopyrrolobenzothiadiazole/phenothiazine and large π-conjugated dithienopyrrolobenzothiadiazole facilitate hole mobility and high conductivity. The devices using the dithienopyrrolobenzothiadiazole/phenothiazine-based hole transporting material achieved a power conversion efficiency of 14.2% under 1 sun illumination and improved stability under 20% relative humidity at room temperature without encapsulation. The present finding highlights the potential of dithienopyrrolobenzothiadiazole-based donor-acceptor-donor small molecular hole transporting materials for perovskite solar cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    17
    Citations
    NaN
    KQI
    []