Long-Term Bone Regeneration Enabled by a PolyhedralOligomeric Silsesquioxane (POSS)-Enhanced Biodegradable Hydrogel

2019 
The development of artificial bone substitutes mimicking the extracellular matrix is a promising strategy for bone repair and regeneration. However, the preparation of materials tailored to feature sufficient mechanical properties, appropriate degradation rates, and favorable osteoinductivity continues to be a great challenge. Hydrogels from biopolymers have emerged as viable substitutes in bone regeneration, but they often suffer from insufficient mechanical strength and rapid degradation rate, critically limiting their clinical applicability. Here, we demonstrate that inorganic/biopolymer hybrid hydrogels formed through photo-cross-linking of methacrylated gelatin (Gel) and octamethacrylated polyhedral oligomeric silsesquioxane (OMAPOSS) nanocages can be tailored to possess high mechanical strength, more appropriate degradation rate, and provide biological activity to meet tissue growth demands outperforming simple Gel hydrogels without POSS. Moreover, Gel-POSS hybrid hydrogels effectively promote mesen...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    15
    Citations
    NaN
    KQI
    []