A Non-Intrusive Signal-Based Fault Diagnosis Method for Proton Exchange Membrane Water Electrolyzer Using Empirical Mode Decomposition

2021 
This work focuses on a signal-based diagnosis approach dedicated to proton exchange membrane water electrolyzer (PEM WE) anode pump fault. The PEM WE cell measurements are performed with an experimental test bench to highlight the impact of water flow rate in the anode compartment. This approach is non-intrusive, and it can detect anode flow rate variation during the electrolysis and is designed to fulfill online diagnosis requirements. Contrary to electrochemical impedance spectroscopy-based approaches (EIS), this method stands out from existing procedures as a result of its few requirements, excluding any signal with perturbing amplitude. Therefore, the electrolyzer remains continuously available, even while the analysis is performed. The empirical mode decomposition (EMD) is used to decompose the signal variation into a sum of amplitude modulation and frequency modulation (AM-FM) components, called intrinsic mode functions (IMFs). In this work, the PEM WE current signal is decomposed into several IMFs using EMD. Then, the energetic contribution of each IMF is calculated. Experimental results exhibited that the energetic contribution of IMFs can be used as relevant criteria for fault diagnosis in PEM WE systems. This process only requires monitoring of the PEM WE current and has a low computational cost, which is a significant economic and technical advantage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    1
    Citations
    NaN
    KQI
    []