Enhanced performance of triboelectric nanogenerator based on polyamide-silver antimony sulfide nanofibers for energy harvesting

2021 
Abstract Triboelectric nanogenerators (TENGs) are new renewable energy harvesting devices that convert small-scale mechanical movements into electrical energy. Nowadays, the dielectric materials with high tribopotential are being investigated significantly to improve the energy conversion efficiency of TENGs. Nanofibers are widely used as dielectric materials in TENGs due to their high surface area and flexibility. In this study, polyacrylonitrile nanofibers and AgSbS2 doped Nylon 6.6 nanofibers were tested as dielectric layers in spring assisted TENGs. Decorating Nylon 6.6 with AgSbS2 both enhanced the output voltage and markedly advanced the power density of the TENGs, and thus improved triboelectric performance of the TENGs. According to the results, tribopotential of Nylon 6.6 was enhanced as AgSbS2 additive amount increased. Compared to PAN/Nylon 6.6 nanofibers based TENG, PAN/10 wt% AgSbS2@Nylon 6.6 nanofibers based TENG exhibited 2.95 and 1.68 fold enhancement in power density and output voltage, respectively. The peak power density of PAN/10 wt% AgSbS2@Nylon 6.6 nanofibers based TENG reached 6.81 W/m2 under a load resistance of 10 MΩ. From the perspective of the choices of materials and design, the results demonstrate that grafting AgSbS2 nanocrystal materials into Nylon 6.6 nanofibers is an effective way to make better the triboelectric performance of nanofibers mat based TENG. Therefore, the study not only shows a high triboelectric performance of nanofibers based TENG, but also shed on light new glance into the material selection, fabrication, and design for contact-separation mode TENGs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    97
    References
    1
    Citations
    NaN
    KQI
    []