Superhydrophobic materials with good oil/water separation and self-cleaning property

2021 
A simple, efficient, and economical method was developed to fabricate superhydrophobic surfaces on various substrates, including wood, bamboo, cotton, filter paper, sponge, glass, textile, and copper. This method involves synthesizing a two-component modifier solution consisting of SiO2 nanoparticles combined with poly(methylhydrogen)siloxane (PMHS) modification. The superhydrophobicity of the coated surfaces was created by PMHS combined with SiO2 nanoparticles to construct a rough hierarchical structure on the surface of the substrate. All superhydrophobic surfaces were maintained at a relative humidity of 50% for 30 days in an indoor environment and subsequently, the superhydrophobic surfaces were kept minus 20 °C for 24 h. It was confirmed that these surfaces exhibited excellent self-cleaning, oil/water separation, and elimination of underwater oil properties. The method for fabricating superhydrophobic materials proposed in this study will have great potential to prepare large-scale superhydrophobic surfaces for use in ancient building protection.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    1
    Citations
    NaN
    KQI
    []