Conductive sodium entry in gill cells of the shore crab, Carcinus maenas

1989 
Isolated posterior gills of shore crabs, Carcinus maenas, collected from the Baltic Sea, were perfused and bathed with sea water and solutions of alkali chlorides. The preparation was used to measure fluxes of sodium from the external medium across the gills into the hemolymph and to determine transepithelial potential differences (PDs). Internally negative active transport PDs resulted from perfusion and bathing the gills symmetrically with the same medium (50% sea water). Passive (asymmetry) PDs following employment of 100% sea water as internal and 50% sea water as external medium were — in contrast to symmetry PDs — insensitive to cyanide and ouabain. This result indicates that the gill recognized the desired hyperosmotic state and responded by switching off the active transport component observed under symmetry conditions. Diffusional potential differences and fluxes of Na+ were inhibited by the externally applied diuretic amiloride. Gradients of pure alkali chlorides between medium and blood were accompanied by cation specific PDs. These PDs and their amiloride sensitivity were inversely related to the diameter of the unhydrated cation and allowed the calculation of the permeability sequence P: Li+>Na+>K+>Rb+>Cs+>Cl-. The results obtained show that the permeability of the gills to cations greatly exceeds that to anions. In addition, these findings indicate that the initial amiloride-sensitive step in Na+ transport across the gill is not represented by an electroneutral sodium/proton exchange but by a conductive mechanism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    18
    Citations
    NaN
    KQI
    []