Mechanism of the growth and development of the posterior silk gland and silk secretion revealed by mutation of the fibroin light chain in silkworm.

2021 
Abstract Silkworm, as a model organism, has very high economic value due to its silk secretion ability. Although a large number of studies have attempted to elucidate the mechanism of silk secretion, it remains unclear. In this study, the fibroin light chain (Fib-L) gene of silkworm was subjected to CRISPR/Cas9 editing, which yielded premature termination of translation at 135 aa. Compared with those of the wild type, the posterior silk glands (PSGs) of the homozygous mutants on the third day of the fifth instar showed obvious premature degeneration. Comparative transcriptome and proteomic analyses of the PSGs of wild-type individuals, heterozygous mutants and homozygous mutants were performed on the fourth day of the fifth instar. A GO enrichment analysis showed that the differentially expressed genes (DEGs) between homozygous mutants and wild-type individuals were enriched in cytoskeleton-related terms, and a KEGG enrichment analysis showed that the upregulated DEGs between homozygous mutants and wild-type individuals were enriched in the phagosome and apoptosis pathways. These results indicated that apoptosis was activated prematurely in the PSGs of homozygous mutants. Furthermore, autophagy and heat shock response were activated in the PSGs of homozygous mutants, as demonstrated by an analysis of the DEGs related to autophagy and heat shock. A comparative proteomic analysis further confirmed that autophagy, apoptosis and the heat shock response were activated in the PSGs of homozygous mutants, which led to premature degradation of the PSGs. These results provide insights for obtaining a more in-depth understanding of the mechanism of silk secretion in silkworms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    0
    Citations
    NaN
    KQI
    []