Realization of a self-powered ZnSnO MSM UV photodetector that uses surface state controlled photovoltaic effect

2020 
Abstract Self-powered ultraviolet (UV) photodetectors (PDs) that use a vertical p-n junction generally involve a complex fabrication process if they are to be integrated with optoelectronic integrated circuits (OEICs). This study demonstrates the fabrication of a self-powered metal-semiconductor-metal (MSM) UV PD with simple planar structure using nontoxic and earth abundant ZnSnO (ZTO). The self-powering characteristic is realized using a localized UV-assisted thermal annealing (LUV-TA) process that selectively modifies the surface states underneath different contacts and creates asymmetric Schottky barrier heights (SBHs) for the MSM PD. The a-ZTO MSM PD with assymmetric SBHs operates at a zero bias and has a responsivity of 18.2 mA/W at 350 nm. The open-circuit voltage is 0.40 V under UV illumination at a wavelength of 365 nm (50 mW/cm2). The device exhibits a fast response speed, with a rise time of 38 ms and a decay time of 180 ms. This study demonstrates that this strategy can be extended to other MSM PDs, particularly those that use an amorphous oxide semiconductor as the active layer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    6
    Citations
    NaN
    KQI
    []