Optical and acoustical monitoring of material processing with Q-switched Nd:YAG and excimer laser radiation

1994 
Characterization of the effects of the interaction between short laser pulses and a material has been made in the conditions of surface cleaning and surface micro-machining. Fast heating of the target surface results in a pressure wave that propagates inside the sample and a shock wave in the surrounding gas medium. By monitoring the energy of the shock wave using a microphone and a piezoelectric transducer, it is possible to relate the ablation rate to the observed signals. Experiments have been made using Nd:YAG and KrF lasers. At high fluences, in particular at 1.06 micrometers , gas breakdown drastically alters the process conditions and disperse the recorded data. By using an additional optical beam deflection technique, we have determined the range of validity for monitoring of the process using simple detection devices.© (1994) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    11
    Citations
    NaN
    KQI
    []