Self‐Assembly of Enzyme‐Like Nanofibrous G‐Molecular Hydrogel for Printed Flexible Electrochemical Sensors

2018 
: Conducting hydrogels provide great potential for creating designer shape-morphing architectures for biomedical applications owing to their unique solid-liquid interface and ease of processability. Here, a novel nanofibrous hydrogel with significant enzyme-like activity that can be used as "ink" to print flexible electrochemical devices is developed. The nanofibrous hydrogel is self-assembled from guanosine (G) and KB(OH)4 with simultaneous incorporation of hemin into the G-quartet scaffold, giving rise to significant enzyme-like activity. The rapid switching between the sol and gel states responsive to shear stress enables free-form fabrication of different patterns. Furthermore, the replication of the G-quartet wires into a conductive matrix by in situ catalytic deposition of polyaniline on nanofibers is demonstrated, which can be directly printed into a flexible electrochemical electrode. By loading glucose oxidase into this novel hydrogel, a flexible glucose biosensor is developed. This study sheds new light on developing artificial enzymes with new functionalities and on fabrication of flexible bioelectronics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    150
    Citations
    NaN
    KQI
    []