Refined quantification of infection bottlenecks and pathogen dissemination with STAMPR

2021 
Pathogen population dynamics during infection are critical determinants of infection susceptibility and define patterns of dissemination. However, deciphering pathogen population dynamics, particularly founding population sizes in host organs and patterns of dissemination between organs, is difficult due to the fact that measuring bacterial burden alone is insufficient to observe these patterns. Introduction of allelic diversity into otherwise identical bacteria using DNA barcodes enables sequencing-based measurements of these parameters, in a method known as STAMP (Sequence Tag-Based analysis of Microbial Population dynamics). However, bacteria often undergo unequal expansion within host organs, resulting in marked differences in the frequencies of barcodes in input and output libraries. Here, we show that these differences confound STAMP-based analyses of founding population sizes and dissemination patterns. We present STAMPR, a successor to STAMP that accounts for such population expansions. Using data from systemic infection of barcoded Extraintestinal Pathogenic E. coli we show that this new framework along with the metrics it yields enhances the fidelity of measurements of bottlenecks and dissemination patterns. STAMPR was also validated on an independent, barcoded Pseudomonas aeruginosa dataset, uncovering new patterns of dissemination within the data. This framework (available at https://github.com/hullahalli/stampr_rtisan), when coupled with barcoded datasets, enables a more complete assessment of within-host bacterial population dynamics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    1
    Citations
    NaN
    KQI
    []