TREM-1 Exacerbates Neuroinflammatory Injury via NLRP3 Inflammasome-Mediated Pyroptosis in Experimental Subarachnoid Hemorrhage.

2020 
Neuroinflammation contributes to the pathogenesis of early brain injury induced by subarachnoid hemorrhage (SAH). Previous reports have demonstrated that triggering receptor expressed on myeloid cells 1 (TREM-1) regulates inflammatory response caused by ischemic stroke or myocardial infarction. However, whether TREM-1 could modulate neuroinflammation after SAH remains largely unknown. Here, using a mouse model of SAH, we found that the expression of TREM-1 was mainly located in microglia cells and increased to peak at 24 h following SAH. Then, TREM-1 antagonist or mimic was intranasally administrated to investigate its effect on SAH. TREM-1 inhibition with LP17 improved neurological deficits, mitigated brain water content, and preserved brain-blood barrier integrity 24 h after SAH, whereas recombinant TREM-1, a mimic of TREM-1, deteriorated these outcomes. In addition, LP17 administration restored long-term sensorimotor coordination and cognitive deficits. Pharmacological blockade of TREM-1 reduced TUNEL-positive and FJC-positive neurons, and CD68-stained microglia in ipsilateral cerebral cortex. Neutrophil invasion was inhibited as protein level of myeloperoxidase (MPO), and MPO-positive cells were both decreased. Moreover, we found that LP17 treatment ameliorated microglial pyroptosis by diminishing levels of N-terminal fragment of GSDMD (GSDMD-N) and IL-1β production. Mechanistically, both in vivo and in vitro, we depicted that TREM-1 can trigger microglial pyroptosis via activating NLRP3 inflammasome. In conclusion, our results revealed the critical role of TREM-1 in neuroinflammation following SAH, suggesting that TREM-1 inhibition might be a potential therapeutic approach for SAH.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    20
    Citations
    NaN
    KQI
    []