Histopathological significance of microRNA-210 expression in acute peripheral ischemia in a murine femoral artery ligation model

2020 
Under hypoxic conditions, microRNA-210 is upregulated and plays multiple physiological roles including in cell growth arrest, stem cell survival, repression of mitochondrial respiration, angiogenesis, and arrest of DNA repair. In this study, we investigated the histopathological expression of microRNA-210 under hypoxic conditions using a femoral artery ligation model established in C57BL/6J mice to determine the pathological significance of microRNA-210. Following femoral artery ligation, ischemia was represented by decreased blood flow compared to the control, in which a sham operation was performed. On histopathology, degeneration/necrosis of the muscle fibers, inflammatory cell infiltration, and regeneration of the muscle fibers were sequentially observed from 3 h to 3 d after ligation of the artery. The degree of these effects was more severe in the area in which type I muscular fibers are dominant. The histological expression of hypoxia-inducible factor 1α, a well-known biomarker of hypoxia, and microRNA-210 was observed in a few necrotic muscle fibers, macrophages, and myoblasts, a distribution consistent with the histopathological lesions, and their signal increased over time. The expression of microRNA-210 in macrophages and myoblasts under ischemia might be indicative of a significant role in the recovery from ischemic lesions. In addition, the in situ hybridization of microRNA-210 could potentially be used for the detection of hypoxia as a histological marker in addition to the immunohistochemistry of hypoxia-inducible factor 1α.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    1
    Citations
    NaN
    KQI
    []