Practical aspects of fast HPLC separations for pharmaceutical process development using monolithic columns

2004 
Abstract A large number of samples can be generated during pharmaceutical process development. Fast separation for these samples is usually challenging due to the complexity of sample matrix, which requires high efficiency as well as high speed. Monolithic columns (E. Merck, Germany) were investigated as a possible tool for reducing separation time in reversed-phase HPLC without significantly sacrificing efficiency or resolution. Both van Deemter plots and separations of alkyl benzenes and in-process samples showed that monolithic columns were suitable for fast separations without significantly compromising resolution. Practical parameters including the pressure drop, retention factor, selectivity, and tailing factor of monolithic columns (Chromolith type) were compared to those of conventional YMC 150 mm × 4.6 mm (3-μm particles) and 250 mm × 4.6 mm (5-μm particles) packed columns. The batch-to-batch reproducibility of the 100 mm × 4.6 mm Chromolith columns from five randomly ordered batches was also compared to the 250 mm × 4.6 mm YMC particle-packed columns. Fast and efficient separations of complicated process samples including crude drug substances, reaction mixtures, and crystallized mother liquors were demonstrated for both monolithic columns and conventional packed columns. The analysis times were decreased by three to seven times on the coupled monolithic columns, while maintaining the comparable resolution to typical 5-μm particle-packed 250 mm × 4.6 mm columns.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    52
    Citations
    NaN
    KQI
    []