Self‐Assembly of Three‐Dimensional Zinc‐Doped NiCo2O4 as Efficient Electrocatalysts for Oxygen Evolution Reaction

2018 
: In this work, a series of three-dimensional porous flower-like zinc doped NiCo2 O4 (ZNCO) nanostructures with different Zn doping level are successfully prepared by a facile solvothermal process without using any templets. The obtained products are characterized by various techniques, and their electrocatalytic performances are also assessed by the oxygen evolution reaction (OER). According to the electrochemical characterization, it is demonstrated that ZNCO-0.15 (i.e., Zn0.15 Ni0.85 Co2 O4 ) nanoflowers show a lower overpotential, smaller Tafel slope, higher electrochemical active surface area (ECSA), as well as a larger turnover frequency (TOF) value than those of Co3 O4 , NiCo2 O4 , and ZnCo2 O4 nanoflowers, indicating that introduction of an optimal content of zinc ions plays an important role in enhancing electrocatalytic performances for OER. The enhanced OER performance of ZNCO-0.15 could be attributed to the increased number of active sites (Co3+ ), accelerated kinetic rate, and promoted conductivity of the catalyst with the incorporation of zinc ions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    24
    Citations
    NaN
    KQI
    []