Spatial methods for deriving crop rotation history
2017
Abstract Benefits of converting 11 years of remote sensing classification data into cropping history of agricultural fields included measuring lengths of rotation cycles and identifying specific sequences of intervening crops grown between final years of old grass seed stands and establishment of new ones. Spatial and non-spatial methods were complementary. Individual-year classification errors were often correctable in spreadsheet-based non-spatial analysis, whereas their presence in spatial data generally led to exclusion of fields from further analysis. Markov-model testing of non-spatial data revealed that year-to-year cropping sequences did not match average frequencies for transitions among crops grown in western Oregon, implying that rotations into new grass seed stands were influenced by growers’ desires to achieve specific objectives. Moran’s I spatial analysis of length of time between consecutive grass seed stands revealed that clustering of fields was relatively uncommon, with high and low value clusters only accounting for 7.1 and 6.2% of fields.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
13
References
4
Citations
NaN
KQI