A survey on matching strategies for boundary image comparison and evaluation

2021 
Abstract Most of the strategies for boundary image evaluation involve the comparison of computer-generated images with ground truth solutions. While this can be done in different manners, recent years have seen a dominance of techniques based on the use of confusion matrices. That is, techniques that, at the evaluation stage, interpret boundary detection as a classification problem. These techniques require a correspondence between the boundary pixels in the candidate image and those in the ground truth; that correspondence is further used to create the confusion matrix, from which evaluation statistics can be computed. The correspondence between boundary images faces different challenges, mainly related to the matching of potentially displaced boundaries. Interestingly, boundary image comparison relates to many other fields of study in literature, from object tracking to biometrical identification. In this work, we survey all existing strategies for boundary matching, we propose a taxonomy to embrace them all, and perform a usability-driven quantitative analysis of their behaviour.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    1
    Citations
    NaN
    KQI
    []