miR-23a contributes to T cellular redox metabolism in juvenile idiopathic oligoarthritis.

2021 
OBJECTIVE Juvenile idiopathic arthritis (JIA) is a chronic inflammatory disease of unknown origin. The regulation of inflammatory processes involves multiple cellular steps including mRNA transcription and translation. Different miRNAs tightly control these processes. We aimed to determine the roles of specific miRNAs within JIA pathogenesis. METHODS We performed a global miRNA expression analysis in parallel in cells from the arthritic joint and peripheral blood of oligoarticular JIA patients and healthy controls. QRT-PCR analysis was used to verify expression of miRNA in T cells. Ex vivo experiments and flow cytometric analyses were used to analyze proliferation and redox metabolism. RESULTS Global miRNA expression analysis demonstrated a different composition of miRNA expression at the site of inflammation compared with peripheral blood. Bioinformatic analysis of predicted miRNA target genes suggest a huge overrepresentation of genes involved in metabolic and oxidative stress pathways in the inflamed joint. Despite enhanced ROS levels within the local inflammatory milieu, JIA T cells are hyperproliferative and reveal an overexpression of miR-23a, which is an inhibitor of PPIF, the regulator of mitochondrial ROS escape. Mitochondrial ROS escape is diminished in JIA T cells resulting in their prolonged survival. CONCLUSION Our data suggest that miRNA dependent mitochondrial ROS shuttling might be a mechanism that contributes to T cell regulation in JIA at the site of inflammation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []