Modification of exosomes with carbonate apatite and a glycan polymer improves transduction efficiency and target cell selectivity.

2021 
Exosomes are secreted from a variety of cells and transmit parental cell-derived biomolecules, such as nucleic acids and proteins, to recipient cells in distant organs. In addition to their important roles in both physiological and pathological conditions, exosomes are expected to serve as natural drug carriers without any cytotoxicity, immunogenicity, or tumorigenicity. However, the use of exosomes as drug delivery tools is limited due to the low uptake efficiency of the target cells, insufficient release of the contents from the endosome to the cytosol, and possible adverse effects caused by the delivery to non-target cells. In the present study, we examined the effects of the modification of exosomes with carbonate apatite or a lactose-carrying polymer. Using newly generated monitoring exosomes that contain either firefly luciferase or fused mCherry/enhanced green fluorescent protein, we demonstrated that the modification of exosomes with carbonate apatite improved their release from the endosome into the cytosol in recipient cells. Meanwhile, the modification of exosomes with a lactose-carrying polymer enhanced the selective delivery to parenchymal hepatocytes. These modified exosomes may provide an efficient strategy for macromolecule therapy for incurable diseases that cannot be treated with conventional small-molecule compounds.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []