Neuromuscular junction instability and altered intracellular calcium handling as early determinants of force loss during unloading in humans.

2021 
KEY POINTS Few days of unloading are sufficient to induce a decline of skeletal muscle mass and function; notably, contractile force is lost at a faster rate than mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. We provide strong evidence of two mechanisms only hypothesized until now for the rapid muscle force loss in only 10 days of bed rest. Our results show that an initial neuromuscular junction instability, accompanied by alterations in the innervation status and impairment of single fibres sarcoplasmic reticulum function contribute to the loss of contractile force in front of a preserved  myofibrillar function and central activation capacity. Early onset of neuromuscular junction instability and impairment in calcium dynamics involved in E-C coupling are proposed as eligible determinants to the greater decline in muscle force than in muscle size during unloading. ABSTRACT Unloading induces rapid skeletal muscle atrophy and functional decline. Importantly, force is lost at a much higher rate than muscle mass. We aimed to investigate the early determinants of the disproportionate loss of force compared to that of muscle mass in response to unloading. Ten young participants underwent 10-day bed rest (BR). At baseline (BR0) and at 10 days (BR10), quadriceps femoris (QF) volume (VOL) and isometric maximum voluntary contraction (MVC) were assessed. At BR0 and BR10 blood samples and biopsies of vastus lateralis (VL) muscle were collected. Neuromuscular junction (NMJ) stability and myofibre innervation status were assessed, together with single fibre mechanical properties and sarcoplasmic reticulum (SR) calcium handling. From BR0 to BR10, QFVOL and MVC decreased by 5.2% (p = .003) and 14.3% (p<.001), respectively. Initial and partial denervation was detected from increased neural cell adhesion molecule (NCAM) positive myofibres at BR10 compared to BR0 (+3.4%, p = .016). NMJ instability was further inferred from increased C-terminal agrin fragment (CAF) concentration in serum (+19.2% at BR10, p = .031). Fast fibre CSA showed a trend to decrease by 15% (p = .055) at BR10, while single fibre maximal tension (force/CSA) was unchanged. However, at BR10 sarcoplasmic reticulum Ca2+ release in response to caffeine decreased by 35.1% (P<.002) and 30.2% (P<.001) in fast and slow fibres, respectively, pointing to an impaired excitation-contraction coupling. These findings support the view that the early onset of NMJ instability and impairment in SR function are eligible mechanisms contributing to the greater decline in muscle force than in muscle size during unloading. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    108
    References
    10
    Citations
    NaN
    KQI
    []