A statistical framework for few-shot action recognition

2021 
Along with the exponential growth of online video creation platforms such as Tik Tok and Instagram, state of the art research involving quick and effective action/gesture recognition remains crucial. This work addresses the challenge of classifying short video clips, using a domain-specific feature design approach, capable of performing significantly well using as little as one training example per action. The method is based on Gunner Farneback’s dense optical flow (GF-OF) estimation strategy, Gaussian mixture models, and information divergence. We first aim to obtain accurate representations of the human movements/actions by clustering the results given by GF-OF using K-means method of vector quantization. We then proceed by representing the result of one instance of each action by a Gaussian mixture model. Furthermore, using Kullback-Leibler divergence (KL-divergence), we attempt to find similarities between the trained actions and the ones in the test videos. Classification is done by matching each test video to the trained action with the highest similarity (a.k.a lowest KL-divergence). We have performed experiments on the KTH and Weizmann Human Action datasets using One-Shot and K-Shot learning approaches, and the results reveal the discriminative nature of our proposed methodology in comparison with state-of-the-art techniques.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    0
    Citations
    NaN
    KQI
    []