Comprehensive genome-wide identification, characterization, and expression profiling of MATE gene family in Nicotiana tabacum.

2021 
Abstract The transporters belonging to the MATE family are involved in the transportation of diverse ligands, including metal ions and small organic molecules, and, therefore, play an important role in plant biology. Our genome-wide analysis led to the identification of 138 MATE genes in N. tabacum, which were grouped into four major phylogenetic clades. The expression of several NtMATE genes was reported to be differential in different tissues, namely young leaf, mature leaf, stem, root, and mature flower. The upstream regions of the NtMATE genes were predicted to contain several cis-acting elements associated with hormonal, developmental, and stress responses. Some of the genes were found to display induced expression following methyl jasmonate treatment. The co-expression analysis revealed 126 candidate transcription factor genes that might be involved in the transcriptional regulation of 21 NtMATE genes. Certain MATE genes (NtMATE81, NtMATE82, NtMATE88, and NtMATE89) were predicted to be targeted by micro RNAs (nta-miR167a, nta-miR167b, nta-miR167c, nta-miR167d and nta-miR167e). The computational analysis of MATE transporters provided insights into the key amino acid residues involved in the binding of the alkaloids. Further, the putative function of some of the NtMATE transporters was also revealed. The present study develops a solid foundation for the functional characterization of MATE transporter genes in N. tabacum.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    85
    References
    0
    Citations
    NaN
    KQI
    []