Bidirectional cell-cell communication via indole and cyclo(Pro-Tyr) modulates interspecies biofilm formation.
2021
The extracellular signaling molecule indole plays a pivotal role in biofilm formation by the enteric γ-Proteobacterium Escherichia coli; this process is particularly correlated with extracellular indole concentration. Using indole-biodegrading β-Proteobacterium Burkholderia unamae, we examined the mechanism by which these two bacteria modulate biofilm formation in an indole-dependent manner. We quantified the spatial organization of cocultured microbial communities at the micron-scale through computational image analysis, ultimately identifying how bidirectional cell-to-cell communication modulated the physical relationships between them. Further analysis allowed us to determine the mechanism by which the B. unamae-derived signaling diketopiperazine, cyclo(Pro-Tyr), considerably upregulated indole biosynthesis and enhanced E. coli biofilm formation. We also determined that the presence of unmetabolized indole enhanced production of cyclo(Pro-Tyr). Thus, bidirectional cell-to-cell communication that occurred via interspecies signaling molecules modulated formation of a mixed-species biofilm between indole-producing and indole-consuming species. Importance Indole is a relatively stable N-heterocyclic aromatic compound that is widely found in nature. To date, the correlations between indole-related bidirectional cell-to-cell communications and interspecies communal organization remain poorly understood. In this study, we used an experimental model, which consisted of indole-producing and indole-degrading bacteria, to evaluate how bidirectional cell-to-cell communication modulated interspecies biofilm formation via intrinsic and environmental cues. We identified a unique spatial patterning of indole-producing and indole-degrading bacteria within mixed-species biofilms. This spatial patterning was an active process mediated by bidirectional physico-chemical interactions. Our findings represent an important step in gaining a more thorough understanding of the process of polymicrobial biofilm formation and advance the possibility of using indole degrading bacteria to address biofilm-related health and industry issues.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
43
References
0
Citations
NaN
KQI