Synthesis of Ag-ZnO core-shell nanoparticles with enhanced photocatalytic activity through atomic layer deposition

2019 
Abstract Herein, Ag-ZnO core-shell nanoparticles (NPs) with enhanced photocatalytic activity were prepared by coating Ag metal cores with ZnO semiconductor shells through atomic layer deposition (ALD). Instrumental analysis revealed that the ultra-thin and conformal nature of the shell allowed the core-shell NPs to simultaneously exploit the photocatalytic properties of ZnO and the plasmonic properties of Ag. In a rhodamine B photodegradation test performed under artificial sunlight, Ag-ZnO core-shell NPs exhibited better photocatalytic performance than other prepared photocatalysts, namely ZnO NPs and ALD-ZnO coated ZnO NPs. The performance enhancement was ascribed to the effect of noble metal-semiconductor heterojunctions, which increased the efficiency of electron-hole separation, i.e., the Ag core effectively captured excited electrons at the ZnO surface, which resulted in the elevated production of hydroxyl radicals from holes remaining at ZnO. A three-dimensional finite-difference time-domain simulation of the Ag-ZnO NPs with variable shell thickness showed that ZnO shells on Ag metal cores increase the intensity of light around NPs, allowing the plasmonic cores to fully utilize incident light.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    19
    Citations
    NaN
    KQI
    []