Progressive damage and elastic-plastic behavior of CF/Al composites during transverse tensile process CF/Al复合材料横向拉伸渐进损伤与弹塑性力学行为

2019 
The unidirectional graphite fiber M40J reinforced aluminum alloy composites (CF/Al composites) was fabricated by vacuum assisted pressure infiltration technology. The elastic-plastic mechanical behavior and the damage evolution behavior of composites was evaluated using micromechanics FEM and tensile testing method. According to the numerical simulation and experimental results, the influence of interface property on the mechanical properties of the campsites during transverse tensile process was also analyzed. The results show that the micromechanical representative volume element (RVE) model established can evaluate the stress-strain behavior of the composites in transverse tensile process. The occurrences of initial damage, damage accumulation and failure in the interface and matrix alloy lead to the fracture of the composites. There is an important influence of interface property on the ductile damage evolution and failure of matrix alloy, which eventually determined the transverse fracture mechanical properties of the CF/Al composites.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []