Evolution of morphology, modulus, and conductivity in polymer electrolytes prepared via polymerization-induced phase separation

2015 
Polymer electrolytes are alternatives to liquid electrolytes traditionally used in electrochemical devices such as lithium-ion batteries and fuel cells. In particular, block polymer electrolytes are promising candidates because they self-assemble into well-defined microstructures, in which orthogonal properties can be integrated into a single material (e.g., high modulus in domain A, fast ion transport in domain B). However, the performance of block polymer electrolytes often falls short, due to the lack of long-range continuity of both domains and relatively low strength. We recently reported a simple, one-pot synthetic strategy to prepare polymer electrolytes with the highest reported combination of modulus and ionic conductivity, attributes enabled by a co-continuous, cross-linked network morphology. In this work we aim to understand the mechanism by which this nanoscale morphology is formed by performing a series of in situ, time-resolved experiments—small-angle X-ray scattering, conductivity, rheolog...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    61
    Citations
    NaN
    KQI
    []