A fully planar solar pumped laser based on a luminescent solar collector

2020 
A solar-pumped laser (SPL) that converts sunlight directly into a coherent and intense laser beam generally requires a large concentrating lens and precise solar tracking, thereby limiting its potential utility. Here, we demonstrate a fully-planar SPL without a lens or solar tracking. A Nd3+-doped silica fiber is coiled into a cylindrical chamber filled with a sensitizer solution, which acts as a luminescent solar collector. The body of the chamber is highly reflective while the top window is a dichroic mirror that transmits incoming sunlight and traps the fluorescence emitted by the sensitizer. The laser-oscillation threshold was reached at a natural sunlight illumination of 60% on the top window. Calculations indicated that a solar-to-laser power-conversion efficiency could eventually reach 8%. Such an SPL has potential applications in long-term renewable-energy storage or decentralised power supplies for electric vehicles and Internet-of-Things devices. Solar-pumped laser systems are attractive for applications including hydrogen generation and space propulsion, but current technologies are cumbersome and rely on accurate tracking of the sun’s light. Here, lasing is achieved using a planar, luminescent solar collector removing the need for lenses or tracking.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    7
    Citations
    NaN
    KQI
    []