Towards a Specific Reaction Parameter Density Functional for H2 + Ni(111): Comparison of Theory with Molecular Beam Sticking Experiments.

2019 
Accurate barriers for rate controlling elementary surface reactions are key to understanding, controlling, and predicting the rate of overall heterogeneously catalyzed processes. The specific reaction parameter approach to density functional theory (SRP-DFT) in principle allows chemically accurate barrier heights to be obtained for molecules dissociating on metal surfaces, and such accurate barriers are now available for four H2–metal and three CH4–metal systems. Also, there is some evidence that SRP density functionals (SRP-DFs) may be transferable among systems in which the same molecule interacts with a low-index face of metals belonging to the same group. To extend the SRP database, here we take a first step to obtain an SRP-DF for H2 + Ni(111) by comparing sticking probabilities (S0) computed with the quasi-classical trajectory method with S0 measured in several molecular beam experiments, using potential energy surfaces computed with several density functionals. We find that the SRP-DF for H2 + Pt(1...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    9
    Citations
    NaN
    KQI
    []