Collective Dynamics of Bulk Nanobubbles with Size-Dependent Surface Tension.

2021 
It has been suggested that irreversible adsorption at the gas/liquid interface of bulk nanobubbles will reduce the Laplace pressure, leading to their stability. However, most previous studies have focused on the stability of individual nanobubbles. Bulk nanobubbles are polydispersed suspensions, and gas molecules can diffuse between bubbles, leading to their collective dynamics, which may be crucial to understanding their formation process and stability. In this study, we proposed a mean-field theory for computing the evolution of the size-distribution function of bulk nanobubbles with size-dependent surface tension. We applied this theory to investigate the evolution of bulk nanobubbles with insoluble surfactants pinned at their gas/water interface. The results show that Ostwald ripening can be suppressed when enough surfactants are adsorbed. Bulk nanobubbles can be produced by the shrinkage of microbubbles in an air-saturated solution. The mean stable size is controlled by the amount of surfactants and the initial microbubble concentration; these predictions are qualitatively consistent with the experimental results of micro/nanobubbles produced using the microfluidic method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    0
    Citations
    NaN
    KQI
    []