Interlaminar Shear Property of Z-Pins Reinforced Woven Ceramic Matrix Composites

2011 
Z-pins reinforced 2D ceramic matrix composites (CMCs), integratedly designed new materials, are developed to enhance 2D CMCs through-thickness in the form of Z-pins and to ensure significant increase in interlaminar fracture toughness, delamination resistance and impact resistance, and Z-pins reinforced 2D CMCs have much application. Finite element method was adopted to analyze stress distributions of Z-pins reinforced woven CMCs; the interlaminar shear tests were employed to measure interlaminar shear strength; fractographies were observed to examine failure mechanisms. The results are shown as the following: the insertion of Z-pins reduces concentrated stress fields and enhances the uniform stress distribution on the expected fracture plane. Interlaminar shear strength of Z-pins reinforced woven CMCs is increased as Z-pins insertion reaches a certain number. Interlaminar shear strength goes up with the rise of the number of inserted Z-pins. Z-pins shearing and fabric/matrix debonding are interlaminar failure mechanisms of Z-pins reinforced CMCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    1
    Citations
    NaN
    KQI
    []