Geological and hydrogeological assessment of the Brito Formation: Municipio de Tola, Nicaragua

2021 
There are sparse hydrogeological data and insufficient hydrogeological knowledge in many areas of the world reliant on groundwater. Nicaragua’s Pacific coast is one such region that is also experiencing water scarcity resulting from increasing demand on groundwater resources and climate change. The primary source of water in the region is the aquifer system associated with the Brito Formation, which is a marine sedimentary stratum of mostly sandstone that blankets 75 km of coastline in southwest Nicaragua. This study focused on the Tola municipality with the objective to advance a conceptual understanding of the hydrogeology and to support sustainable water development. Results demonstrate a heterogeneous aquifer system with regional flow characteristics and other factors that influence groundwater availability and water quality. Primary porosity is low, and secondary porosity is the primary mechanism of aquifer storage and is influenced by geological structure and diagenesis processes. Groundwater recharge is spatially and temporally heterogeneous and direct recharge is low. Infiltration of streamflow and runoff, especially early in the rainy season, is thought to be a large component of groundwater recharge. Climate, flow and recharge dynamics, and low storage capacity make the Brito Formation a sensitive resource and vulnerable to drought, increased abstraction, and climate change. This assessment provides data and insights useful for informing future studies and investments within the region and may be applicable in other Central American and Caribbean nations with coastal sandstone aquifers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []