Glycyrrhizin protects brain against ischemia–reperfusion injury in mice through HMGB1-TLR4-IL-17A signaling pathway

2014 
Abstract High mobility group box 1 (HMGB1)-Toll-like receptor 4 (TLR4) signaling has been recently found to induce interleukin (IL)-17A secretion in drug-induced hepatitis and myocardial I/R injury. The purpose of this study is to evaluate whether HMGB1-TLR4 signaling could induce IL-17A secretion and lead to brain I/R injury. We also sought to investigate whether glycyrrhizin elucidated its neuroprotective effects through HMGB1-TLR4-IL-17A signaling pathway. Various biochemical estimations, neurological status, and assessment of cerebral infarct size were carried out 72 h after middle cerebral artery occlusion (MCAO) stroke. Apoptotic cells were assessed using a terminal deoxynucleotidyl transferase, dUTP nick and labeling (TUNEL) kit. The expression of HMGB1, IL-17A, bcl-2, bax and cleaved caspase-3, were determined by Western blot assay. In the present study we found that glycyrrhizin significantly decreased HMGB1 protein expression. Glycyrrhizin markedly reduced whereas recombinant HMGB1 (rHMGB1) increased IL-17A expression. HMGB1 induced increase of IL-17A was significantly diminished in TLR4-mutant C3H/HeJ mice. Brain injury and neurological deficits were largely abrogated by glycyrrhizin or IL-17A knockout. In contrast, rHMGB1 or recombinant mouse IL-17A markedly increased I/R injury. However, rHMGB1 had no effects on infarct size and neurological deficits in Il17a −/− mice following brain I/R injury. In addition, IL-17A knockout mice significantly increased bcl-2 protein expression and had fewer apoptotic cells, whereas recombinant IL-17A-treated mice significantly increased bax and cleaved caspase-3 protein expression and had more apoptotic cells. Together these results indicate that glycyrrhizin has neuroprotective efficacy in the postischemic brain through HMGB1-TLR4-IL-17A signaling pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    66
    Citations
    NaN
    KQI
    []