Three-Dimensional Structure of Non-Equilibrium Homogeneous Condensation Flow in a Supersonic Rectangular Nozzle

2021 
Numerical simulations have been carried out for a supersonic three-dimensional rectangular arc nozzle, where a secondary flow toward the center of the curvature occurs due to the shape of the nozzle. It is known that secondary flow causes longitudinal vortices to form near the wall of the nozzle corner, making the nozzle outlet flow unstable and induces loss of transport energy. When the working fluid is a condensable gas with relatively large latent heat such as moist air or steam, rapid accelerated expansion in the nozzle causes non-equilibrium condensation due to supersaturation. After the release of latent heat during phase transition, nozzle flow continues expanding at an equilibrium saturation condition. In the absence of foreign particles, e.g. ions or dust particles, condensation nuclei are formed in the gas itself causing non-equilibrium homogeneous condensation. Supersonic nozzle flow properties vary considerably due to the occurrence of condensation phenomenon. The objective of this study is to investigate the effect of non-equilibrium homogeneous condensation on the longitudinal vortices which form in the range close to the corner of rectangular arc nozzle numerically.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []