Reliable grading robust stabilization for uncertain time-varying systems via dynamic compensator

2002 
A new general model for uncertain time-varying parameters and a new measure sensor failure model are presented, and the problems of both grading robust stabilization and reliable grading robust stabilization for such systems are studied. By the Lyapunov stability theory and matrix algebra method, some sufficient criteria for the above two control problems are established in quasi-linear matrix inequalities (Q-LMIS) forms. In view of linear matrix inequality (LMI) approach, a solving procedure for the Q-LMIS problem is proposed. The solvability of the Q-LMIS problem can be improved obviously by adding some LMI constraints to the Q-LMIS. Based on the two Q-LMIS criteria, a grading robust stable control strategy, namely, the controller with different energy is acted on the system with different uncertain parameter range, is presented. The numerical simulating results show that the grading robust stable control strategy for the robust stabilization of uncertain systems has important theoretical and practical significance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []