Functional proteomic atlas of HIV infection in primary human CD4+ T cells

2019 
Viruses manipulate host cells to enhance their replication, and the identification of host factors targeted by viruses has led to key insights in both viral pathogenesis and cellular physiology. We previously described global changes in cellular protein levels during human immunodeficiency virus (HIV) infection using transformed CEM-T4 T cells as a model. In this study, we develop an HIV reporter virus displaying a streptavidin-binding affinity tag at the surface of infected cells, allowing facile one-step selection with streptavidin-conjugated magnetic beads. We use this system to obtain pure populations of HIV-infected primary human CD4+ T cells for detailed proteomic analysis, including quantitation of >9,000 proteins across 4 different donors, and temporal profiling during T cell activation. Remarkably, amongst 650 cellular proteins significantly perturbed during HIV infection of primary T cells (q
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    108
    References
    2
    Citations
    NaN
    KQI
    []