Kinetics of in Vitro Guanine-N7-Alkylation in Calf Thymus DNA by (2S,3S)-1,2-Epoxybutane-3,4-diol 4-methanesulfonate and (2S,3S)-1,2:3,4-Diepoxybutane: Revision of the Mechanism of DNA Cross-Linking by the Prodrug Treosulfan

2019 
Prodrug treosulfan, originally registered for treatment of ovarian cancer, has gained a use in conditioning prior to hematopoietic stem cell transplantation. Treosulfan converts nonenzymatically to the monoepoxide intermediate (EBDM), and then to (2S,3S)-1,2:3,4-diepoxybutane (DEB). The latter alkylates DNA forming mainly (2′S,3′S)-N-7-(2′,3′,4′-trihydroxybut-1′-yl)guanine (THBG) and (2S,3S)-1,4-bis(guan-7′-yl)butane-2,3-diol cross-link (bis-N7G-BD) via the intermediate epoxide adduct (EHBG). It is believed that DNA cross-linking by DEB is a primary mechanism for the anticancer and myeloablative properties of treosulfan, but clear evidence is lacking. Recently, we have proved that EBDM alkylates DNA producing (2′S,3′S)-N-7-(2′,3′-dihydroxy-4′-methylsulfonyloxybut-1′-yl)-guanine (HMSBG) and that free HMSBG converts to EHBG. In this paper, we investigated the kinetics of HMSBG, bis-N7G-BD, and THBG in DNA in vitro to elucidate the contribution of EBDM and DEB to treosulfan-dependent DNA–DNA cross-linking. C...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    2
    Citations
    NaN
    KQI
    []