Adaptive LADAR Receiver for Multispectral Imaging

2001 
We are developing a novel 2D focal plane array (FPA) with read-out integrated circuit (ROIC) on a single chip for 3D laser radar imaging. The ladar will provide high-resolution range and range-resolved intensity images for detection and identification of difficult targets. The initial full imaging-camera-on-a-chip system will be a 64 by 64 element, 100-micrometers pixel-size detector array that is directly bump bonded to a low-noise 64 by 64 array silicon CMOS-based ROIC. The architecture is scalable to 256 by 256 or higher arrays depending on the system application. The system will provide all the required electronic processing at pixel level and the smart FPA enables directly producing the 3D or 4D format data to be captured with a single laser pulse. The detector arrays are made of uncooled InGaAs PIN device for SWIR imaging at 1.5 micrometers wavelength and cooled HgCdTe PIN device for MWIR imaging at 3.8 micrometers wavelength. We are also investigating concepts using multi-color detector arrays for simultaneous imaging at multiple wavelengths that would provide additional spectral dimension capability for enhanced detection and identification of deep-hide targets. The system is suited for flash ladar imaging, for combat identification of ground targets from airborne platforms, flash-ladar imaging seekers, and autonomous robotic/automotive vehicle navigation and collision avoidance applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    2
    Citations
    NaN
    KQI
    []