Quantum statistics in Bohmian trajectory gravity

2019 
The recent experimental proposals by Bose et al. and Marletto et al. (BMV) outline a way to test for the quantum nature of gravity by measuring gravitationally induced differential phase accumulation over the superposed paths of two 10^-14kg masses. These authors outline the expected outcome of these experiments for semi-classical, quantum gravity and collapse models. It is found that both semi-classical and collapse models predict a lack of entanglement in the experimental results. This work predicts the outcome of the BMV experiment in Bohmian trajectory gravity - where classical gravity is assumed to couple to the particle configuration in each Bohmian path, as opposed to semi-classical gravity where gravity couples to the expectation value of the wave function, or of quantized gravity, where the gravitational field is itself in a quantum superposition. In the case of the BMV experiment, Bohmian trajectory gravity predicts that there will be quantum entanglement. This is surprising as the gravitational field is treated classically. A discussion of how Bohmian trajectory gravity can induce quantum entanglement for a non-superposed gravitational field is put forward.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []