Energy-efficient architecture for advanced video memory
2014
An energy-efficient hybrid on-chip video memory architecture (enHyV) is presented that combines private and shared memories using a hybrid design (i.e., SRAM and emerging STT-RAM). The key is to leverage the application-specific properties to efficiently design and manage the enHyV. To increase STT-RAM lifetime, we propose a data management technique that alleviates the bit-toggling write occurrences. An adaptive power management is also proposed for static-energy savings. Experimental results illustrate that enHyV reduces on-chip static memory energy compared to SRAM-only version of enHyV and to state-of-art AMBER hybrid video memory [9] by 66%-75% and 55%-76%, respectively. Furthermore, negligible external memory energy consumption is required for reference frames communication (98% lower than state-of-the-art Level C+ technique [18]). Our data management significantly improves the enHyV STT-RAM lifetime, achieving 0.83 of normalized lifetime (near to the optimal case). Our hybrid memory design and management incur low overhead in terms of latency and dynamic energy.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
17
References
14
Citations
NaN
KQI