Seasonal variation in molar outline of bank voles: An effect of wear?

2010 
Abstract Morphometric characters can be of use for elucidating the evolutionary history of species by providing an insight into the selective pressure related to the character of interest, and by allowing integration of fossil specimens. This potential interest of phenotypic characters, however, depends on how much other sources of variation, such as the life-history of the animal, may blur an evolutionary signal. For instance, age structure varies along the year, causing in turn various assemblages of wear stages in the teeth sampled at a given place and time. In this context, we investigated the season of trapping as potential source of variation in the size and shape of the molar occlusal surface of the bank vole, Clethrionomys glareolus . The size and shape of the occlusal surface of the third upper molar was quantified using outline analysis in 60 bank voles from Finland, trapped at the same study site in successive spring and autumn. The occlusal surface clearly differed in size and shape between the two seasons of trapping. Using 3D imaging as a visual support, we interpret this difference as the result of differential wear. The population in autumn is dominated by young specimens with unworn teeth whereas spring populations are composed of old animals with worn down molars. The range of seasonal variation in tooth size and shape appears to be of the same order of magnitude as biogeographic variation, demonstrating that differential wear may have a strong impact on biogeographic and evolutionary studies. Yet, beyond the effect of trapping season, a biogeographic signal still emerged, related to the genetic lineages evidenced in other studies. In consequence, morphometric characters such as size and shape of molar occlusal surfaces appear as valuable tracers of biogeographic differentiation, but future studies should take seasonal variations into account for more robust interpretation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    12
    Citations
    NaN
    KQI
    []