A FINITE DIFFERENCE METHOD FOR THE ONE-DIMENSIONAL VARIATIONAL BOUSSINESQ EQUATIONS

2012 
The variational Boussinesq equations derived by Klopman et. al. (2005) con-verse mass, momentum and positive-definite energy. Moreover, they were shown to have significantly improved frequency dispersion characteristics, making it suitable for wave simulation from relatively deep to shallow water. In this paper we develop a numerica lcode for the variational Boussinesq equations. This code uses a fourth-order predictor-corrector method for time derivatives and fourth-order finite difference method for the first-order spatial derivatives. The numerical method is validated against experimen-tal data for one-dimensional nonlinear wave transformation problems. Furthermore, the method is used to illustrate the dispersive effects on tsunami-type of wave propagation. DOI :  http://dx.doi.org/10.22342/jims.14.1.57.1-11
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []