Tight Bounds on The Clique Chromatic Number.

2020 
The clique chromatic number of a graph is the minimum number of colours needed to colour its vertices so that no inclusion-wise maximal clique which is not an isolated vertex is monochromatic. We show that every graph of maximum degree $\Delta$ has clique chromatic number $O\left(\frac{\Delta}{\log~\Delta}\right)$. We obtain as a corollary that every $n$-vertex graph has clique chromatic number $O\left(\sqrt{\frac{n}{\log ~n}}\right)$. Both these results are tight.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    2
    Citations
    NaN
    KQI
    []