Modeling Haptic Communication in Cooperative Teams

2021 
A means to communicate by touch is established when two humans grasp a common rigid object, and such communication is thought to play a role in the superior performance two humans acting together are able to demonstrate over either agent acting alone. But the superior performance demonstrated by dyads, whether in making point-to-point movements or tracking unpredictable targets, is strictly empirical to date. Mechanistic accounts for the performance improvement and explanations relying on haptic communication have been lacking. In this paper we develop a model of haptic communication across a linkage connecting two agents that provides an explicit means for the dyad to achieve a higher loop gain than either agent acting alone and higher than the two agents acting together without haptic feedback. We show that haptic communication closes an additional feedback loop through the linkage and the sensorimotor control systems of both agents. This feedback loop contributes a new factor to the loop gain and thus a definitive mechanism for the dyad to improve performance. Our model predicts higher internal forces with haptic communication, which have previously been observed. Additional testable hypotheses emerge from the model and create a promising future means to transfer human-human dyad behaviors to human-robot teams.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    0
    Citations
    NaN
    KQI
    []