Retinoic acid controls the homeostasis of pre-cDC–derived splenic and intestinal dendritic cells

2013 
Dendritic cells (DCs) comprise distinct populations with specialized immune-regulatory functions. However, the environmental factors that determine the differentiation of these subsets remain poorly defined. Here, we report that retinoic acid (RA), a vitamin A derivative, controls the homeostasis of pre-DC (precursor of DC)–derived splenic CD11b+CD8α−Esamhigh DCs and the developmentally related CD11b+CD103+ subset within the gut. Whereas mice deprived of RA signaling significantly lost both of these populations, neither pre-DC–derived CD11b−CD8α+ and CD11b−CD103+ nor monocyte-derived CD11b+CD8α−Esamlow or CD11b+CD103− DC populations were deficient. In fate-tracking experiments, transfer of pre-DCs into RA-supplemented hosts resulted in near complete conversion of these cells into the CD11b+CD8α− subset, whereas transfer into vitamin A–deficient (VAD) hosts caused diversion to the CD11b−CD8α+ lineage. As vitamin A is an essential nutrient, we evaluated retinoid levels in mice and humans after radiation-induced mucosal injury and found this conditioning led to an acute VAD state. Consequently, radiation led to a selective loss of both RA-dependent DC subsets and impaired class II–restricted auto and antitumor immunity that could be rescued by supplemental RA. These findings establish a critical role for RA in regulating the homeostasis of pre-DC–derived DC subsets and have implications for the management of patients with immune deficiencies resulting from malnutrition and irradiation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    95
    Citations
    NaN
    KQI
    []