Modeling of long nonlinear waves on the interface in a horizontal two-layer viscous channel flow

2005 
The dynamics of two-dimensional waves of small but finite amplitude are theoretically studied for the case of a two-layer system bounded by a horizontal top and bottom. It is shown that for relatively large steady-state flow velocities and at certain fluid depth ratios the vertical velocity profile is nonlinear. An evolutionary equation governing the fluid interface disturbances and allowing for the long-wave contributions of the layer inertia and surface tension, the weak nonlinearity of the waves, and the unsteady friction on all the boundaries of the system is derived. Steady-state solutions of the cnoidal and solitary wave type for the disturbed flow are determined without regard for dissipation losses. It is found that the magnitude and the direction of the flow can alter not only the lengths of the waves but also their polarity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    2
    Citations
    NaN
    KQI
    []