Mechanisms of transcriptional modulation of the human anion exchanger SLC26A3 gene expression by IFN-γ

2010 
Two members of the SLC26 gene family, SLC26A3 or DRA (downregulated in adenoma) and SLC26A6 (putative anion transporter 1, PAT1), are known to play a major role in apical Cl−/OH− (HCO3−) exchange process in the human intestine. We have previously shown the inhibitory effects of IFN-γ (30 ng/ml, 24 h) on both SLC26A3 and A6 expression and promoter activity. We also demonstrated that the effects of IFN-γ on SLC26A6 gene expression were mediated via IRF-1 transcription factor. However, the molecular mechanisms underlying the transcriptional modulation of SLC26A3 gene expression by IFN-γ in the intestine are not known. The present studies were, therefore, designed to elucidate the signaling mechanisms and transcription factor(s) involved in mediating the inhibitory effects of IFN-γ on DRA promoter (p-−1183/+114) activity. Deletion analysis indicated that the IFN-γ response element is located within the −1183 to −790 region, and sequence analysis of this region revealed the presence of potential γ-activated site (GAS), a binding site (−933/−925 bp) for signal transducer and activator of transcription factor 1 (STAT1). Mutations in the potential GAS element abrogated the inhibitory effects of IFN-γ. These studies provide evidence for the involvement of STAT1 in the inhibition of SLC26A3 gene expression by IFN-γ in the human intestine.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    41
    Citations
    NaN
    KQI
    []