In-Plane Epitaxial Growth of Silicon Nanowires and Junction Formation on Si(100) Substrates

2014 
Growing self-assembled silicon nanowires (SiNWs) into precise locations represents a critical capability to scale up SiNW-based functionalities. We here report a novel epitaxy growth phenomenon and strategy to fabricate orderly arrays of self-aligned in-plane SiNWs on Si(100) substrates following exactly the underlying crystallographic orientations. We observe also a rich set of distinctive growth dynamics/ modes that lead to remarkably different morphologies of epitaxially grown SiNWs/or grains under variant growth balance conditions. High-resolution transmission electron microscopy cross-section analysis confirms a coherent epitaxy (or partial epitaxy) interface between the in-plane SiNWs and the Si(100) substrate, while conductive atomic force microscopy characterization reveals that electrically rectifying p−n junctions are formed between the p-type doped in-plane SiNWs and the n-type c-Si(100) substrate. This in-plane epitaxy growth could provide an effective means to define nanoscale junction and doping profiles, providing a basis for exploring novel nanoelectronics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    25
    Citations
    NaN
    KQI
    []