Reduction of synthetic ferrihydrite by a binary anaerobic culture of Anaerobacillus alkalilacustris and Geoalkalibacter ferrihydriticus grown on mannitol at pH 9.5

2011 
In the course of an investigation of alkaliphilic iron reduction, metabiotic interactions in a binary culture reducing synthetic ferrihydrite (SF) have been studied. The binary culture contained two anaerobic bacteria: the alkaliphilic organotrophic bacillus Anaerobacillus alkalilacustris, which ferments sugars and sugar alcohols and is incapable of iron reduction, and the dissimilatory iron-reducing bacterium Geoalkalibacter ferrihydriticus, which is able to grow on acetate at the expense of anaerobic respiration. The experiments were performed under conditions of SF excess and deficiency. It was expected that G. ferrihydriticus would oxidize the acetate formed in the course of mannitol fermentation by A. alkalilacustris. The results were different from the expected ones: in the binary culture, fermentation products other than acetate were used for iron reduction; these were primarily formate and ethanol, which led to acetate accumulation rather than consumption. The reduction of SF to magnetite and/or siderite followed the earlier established regularities. The preferential order of donor utilization by G. ferrihydriticus did not conform to the energy yields of the corresponding reactions. Thus, it has been shown that there may be interactions in microbial communities that cannot be predicted from the characteristics of pure cultures. The degradation pathways of organic matter in communities may differ considerably from those observed in pure cultures, even in pure cultures of highly specialized organisms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    8
    Citations
    NaN
    KQI
    []